Python: Real-World Data Science by Dusty Phillips
Requirements: Any PDF Reader, 20mb
Overview: The Python: Real-World Data Science course will take you on a journey to become an efficient data science practitioner by thoroughly understanding the key concepts of Python. This learning path is divided into four modules and each module are a mini course in their own right, and as you complete each one, you’ll have gained key skills and be ready for the material in the next module.
The course begins with getting your Python fundamentals nailed down. After getting familiar with Python core concepts, it’s time that you dive into the field of data science. In the second module, you’ll learn how to perform data analysis using Python in a practical and example-driven way. The third module will teach you how to design and develop data mining applications using a variety of datasets, starting with basic classification and affinity analysis to more complex data types including text, images, and graphs. Machine learning and predictive analytics have become the most important approaches to uncover data gold mines. In the final module, we’ll discuss the necessary details regarding machine learning concepts, offering intuitive yet informative explanations on how machine learning algorithms work, how to use them, and most importantly, how to avoid the common pitfalls.
Genre: Non-Fiction> Programming > Languages & Tools
What You Will Learn
Install and setup Python
Implement objects in Python by creating classes and defining methods
Get acquainted with NumPy to use it with arrays and array-oriented computing in data analysis
Create effective visualizations for presenting your data using Matplotlib
Process and analyze data using the time series capabilities of pandas
Interact with different kind of database systems, such as file, disk format, Mongo, and Redis
Apply data mining concepts to real-world problems
Compute on big data, including real-time data from the Internet
Explore how to use different machine learning models to ask different questions of your data
Download Instructions:
https://douploads.com/yio65plt0pjj
http://files.pw/0wdedwvf8b1e