Requirements: .PDF reader, 41 MB
Overview: A rigorous, self-contained examination of mixed model theory and application
Mixed modeling is one of the most promising and exciting areas of statistical analysis, enabling the analysis of nontraditional, clustered data that may come in the form of shapes or images. This book provides in-depth mathematical coverage of mixed models’ statistical properties and numerical algorithms, as well as applications such as the analysis of tumor regrowth, shape, and image.
Paying special attention to algorithms and their implementations, the book discusses:
Modeling of complex clustered or longitudinal data
Modeling data with multiple sources of variation
Modeling biological variety and heterogeneity
Mixed model as a compromise between the frequentist and Bayesian approaches
Mixed model for the penalized log-likelihood
Healthy Akaike Information Criterion (HAIC)
How to cope with parameter multidimensionality
How to solve ill-posed problems including image reconstruction problems
Modeling of ensemble shapes and images
Statistics of image processing
Major results and points of discussion at the end of each chapter along with “Summary Points” sections make this reference not only comprehensive but also highly accessible for professionals and students alike in a broad range of fields such as cancer research, computer science, engineering, and industry.
Genre: Non-Fiction > Educational
Download Instructions:
https://ouo.io/J4Uaic
https://ouo.io/SVLD7Fu
.